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Which Structures Are Out There?
Learning Predictive Compositional Concepts  
Based on Social Sensorimotor Explorations

Martin V. Butz

How do we learn to think about our world in a flexible, compositional manner? 
What is the actual content of a particular thought? How do we become language 
ready? I argue that free energy-based inference processes, which determine the 
learning of predictive encodings, need to incorporate additional structural learning 
biases that reflect those structures of our world that are behaviorally relevant for 
us. In particular, I argue that the inference processes and thus the resulting predic-
tive encodings should enable (i) the distinction of space from entities, with their 
perceptually and behaviorally relevant properties, (ii) the flexible, temporary acti-
vation of relative spatial relations between different entities, (iii) the dynamic adap-
tation of the involved, distinct encodings while executing, observing, or imagining 
particular interactions, and (iv) the development of a — probably motor-grounded 
— concept of forces, which predictively encodes the results of relative spatial and 
property manipulations dynamically over time. Furthermore, seeing that entity 
interactions typically have a beginning and an end, free energy-based inference 
should be additionally biased towards the segmentation of continuous sensorimo-
tor interactions and sensory experiences into events and event boundaries. There-
by, events may be characterized by particular sets of active predictive encodings. 
Event boundaries, on the other hand, identify those situational aspects that are 
critical for the commencement or the termination of a particular event, such as the 
establishment of object contact and contact release. I argue that the development 
of predictive event encodings naturally lead to the development of conceptual en-
codings and the possibility of composing these encodings in a highly flexible, se-
mantic manner. Behavior is generated by means of active inference. The addition 
of internal motivations in the form of homeostatic variables focusses our behavior 
— including attention and thought — on those environmental interactions that 
are motivationally-relevant, thus continuously striving for internal homeostasis 
in a goal-directed manner. As a consequence, behavior focusses cognitive devel-
opment towards (believed) bodily and cognitively (including socially) relevant as-
pects. The capacity to integrate tools and other humans into our minds, as well as 
the motivation to flexibly interact with them, seem to open up the possibility of 
assigning roles — such as actors, instruments, and recipients — when observing, 
executing, or imagining particular environmental interactions. Moreover, in con-
junction with predictive event encodings, this tool- and socially-oriented mental 
flexibilization fosters perspective taking, reasoning, and other forms of mentalizing. 
Finally, I discuss how these structures and mechanisms are exactly those that seem 
necessary to make our minds language ready.
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1  Structuring the Generative, Predictive Mind 

The predictive mind (Hohwy 2013), which may be viewed as continuously “surfing” on its currently ac-
tive predictions and the involved uncertainties about its environment (Clark 2013; Clark 2016), gives a 
very intuitive and integrative view on how our mind works. However, many details of this perspective 
remain to be determined. The free energy-based inference principle offers a mathematical framework 
to specify implementational details (Friston 2010), addressing the question how predictions may in-
teract and how predictive structures may be learned in the first place. Furthermore, goal-pursuance 
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has been successfully integrated by formulations of active inference, which is anticipatory in that it 
takes probabilistic differences between expected and desired future states into account when inferring 
current behavior, thus yielding goal-directed and epistemic (that is, information seeking) behavior. In 
sum, the free energy principle allows the mathematical formulation of slower structural learning and 
faster activity adaptations (Friston et al. 2011) as well as anticipatory, active inference-based goal-di-
rected behavior. 

While all three inference aspects have been implemented successfully, the implementations so far 
have not come anywhere close to yielding a scalable learning system, that is, a system that is able to 
successfully and computationally efficiently learn in and interact with complex, real-world environ-
ments. Moreover, the learning of conceptual structures and behaviorally-relevant abstractions from 
continuous sensory-motor information has not yet been accomplished. Nonetheless, the available 
proofs of principle show that the free energy-based inference approach and the resulting conceptual-
ization of the mind as a predictive encoding and processing system has very strong merits and seems 
neuro-computationally as well as cognitively plausible (Butz 2016; Clark 2016; Hohwy 2013). 

One reason why scalability is still out of reach may lie in the fact that current formalizations and 
implementations rely on particular, hand-designed representations, within which formalizations of 
uncertainties, probabilistic information processing, predictive estimations, motor activities, and sen-
sory feedback unfold. From machine learning and optimization theory perspectives, however, it is 
well-known that learning can only make efficient progress when particular structures can be expected 
in the addressed learning or optimization problems (cf. no free lunch theorem (NFL), Wolpert and 
Macready 1997). Thus, the theory implies that it is mandatory to uncover the structures that can be 
found in our environment and which a learning and optimization system should `look for.’ Tech-
nically, this means that formalizations of free energy-based learning and inference should work on 
integrating those structural learning and information processing biases that are maximally suitable to 
learn from and interact with our world most effectively. Presumably, evolution has integrated those 
biases into our brain’s free energy-based inference processes (including, for example, physiological 
growth and neural wiring mechanisms).

Fortunately, we do not need to start from scratch when exploring which structures are there and we 
do not need to be very speculative, either. Rather, psychological and cognitive science research offers 
various clues about fundamental structural components, which our brain tends to process in distinct 
manners. One very important aspect is the fact that predictive encodings must ultimately serve the pur-
pose of flexibly and effectively planning and controlling interactions with the world. Thus, the men-
tioned structural learning biases need to be behavior-oriented. For example, behavioral predictions and 
goal-directed manipulations of entities can be encoded much more effectively by entity-relative spatial 
arrangements and local interactions between entities in contrast to global spatial localizations.

Thus, I have suggested that three fundamental types of predictive encodings1 should be distinguished, 
which are spatial, top-down, and temporal predictive encodings (Butz 2016). The separation of these will 
lead to the development of (i) universal spatial mappings — and probably the possibility to think spa-
tially in the first place — of (ii) higher-level, multisensory integrative perceptual encodings of entities 
and their particular properties, and of (iii) temporal predictive encodings, which enable the anticipation 
of future events on various time scales. Moreover, temporal predictive encodings enable goal-directed 
behavioral decision making and control as well as goal-oriented attention by means of active inference. 

For abstracting the predictive encodings further, event segmentation theory (Zacks and Tver-
sky 2001) offers an additional fundamental structural principle: the segmentation of the continuous 
sensory-motor experiences into event encodings and event boundary encodings. It appears that when 
learning focusses on the processing, detection, and induction of events, fundamental conceptualiza-

1 Please note that I use the term “predictive encodings” to explicitly distinguish such encodings from “representations.” Predictive encodings are not 
representations per se. Rather, they are encodings of predictions about the activity state of other predictive encodings. Their partial representational 
properties are only a result of what is actually encoded.
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tions of the environment can develop, which come in the form of spatial, property-oriented, and tem-
poral force-based conceptualizations (Butz 2016).

Clearly, our body-grounded motivational system is the driving force that makes us interact with 
and explore our world in the first place. Hunger and other bodily signals, as well as social needs, de-
termine our behavior from birth onwards, and to some extent even before that. Thus, encodings need 
to develop that are able to predict when and how certain motivations are typically satisfied. As a result, 
the predictive encodings sketched-out above can be expected to be further shaped by motivational 
influences. Moreover, behavior will be determined to a large extent by the bodily motivational system, 
such that the gathered sensory-motor statistics about the world will be strongly motivationally biased.

Finally, besides tendencies towards particular modularizations and segmentations, the human 
mind has developed highly versatile behavioral and social capacities. Tool usage is unprecedented 
and relies on the ability to flexibly integrate different tools into our own postural body schema. Social 
interactions require the integration of other humans into our cognitive apparatus — with the tendency 
to assign similar capabilities (physical and mental) to them. I thus emphasize the importance of our 
social abilities, and particularly cooperation and perspective taking in relation to predictive encod-
ings. By interacting with others and acknowledging that others and even the society as an imaginary 
entity watch and evaluate us — and even determine further interactions with us dependent on these 
observations — our minds integrate us into a bigger social reality, within which any participant can 
take on particular roles during particular interactions (Tomasello 2014). I will discuss what this im-
plies for our actual perceptions, interactions, and actual thoughts about our world, our ‘selves’, and our 
knowledge and cognitive capabilities. 

In conclusion, I argue that while our minds are individually shaped in their details, the overall 
structure reflects the structures found in our environment, including physical, biological, as well as so-
cial and cultural structures. As a result, our abilities for role taking and flexible concept compositions 
come naturally to us and significantly contribute to the beauty and the peculiarities of our mind. No 
wonder that a universal grammar has been detected (Jackendoff 2002): it is the grammar of pre-lin-
guistic human thought, which enables us to learn any available human language as a child. 

2  How Do We Comprehend Compositional Concepts? An Illustrative Example 
Let us look at an example of how our mind seems to combine entities and associated knowledge 
about these entities into a consistent concept composition. Interestingly, artificial intelligence has been 
struggling to do just that and has recently proposed the so-called Winograd Challenge (Levesque et al. 
2012; Levesque 2014), which is named after the AI researcher Terry Winograd , who created a rather 
intelligent software in the 1970s (Winograd 1972), which was able to produce meaningful sentences 
and interactions in a blocks world. The derived challenge basically focusses on common sense reason-
ing, wrapped into the challenge of pronoun disambiguation. Take for example the following statement:

The ba l l  f i t s  into  the  suitcase,  because  it  i s  smal l  [ large] . 

Clearly the pronoun ‘it’ refers to the ball or to the suitcase, depending on whether the adjective 
is ‘small’ or ‘large’. Grammatically ball or suitcase could be chosen (and in natural English language 
it is actually more likely that the adjective (small or large) refers to the subject (ball). The Winograd 
Challenge explicitly gives a 50% chance of choosing the referenced noun correctly when no semantic 
information is considered. Our common sense knowledge helps us solve this pronoun disambiguation 
problem. In particular, as put forward by Barsalou and others (Barsalou 1999; Barsalou 2008; Butz 
2008; Butz 2016; Gallese and Goldman 1998), we probably imagine the situation in some form of con-
ceptualized, anticipatory simulation. Figure 1 illustrates some aspects of the simulation that may be 
activated in our minds. There is the entity ‘ball’ and the entity ‘suitcase’, which are probably encoded by 
means of distributed, conceptual, predictive encodings. Moreover, the verb phrase “fits into” implies 

http://predictive-mind.net/papers/@@chapters?nr=8
http://dx.doi.org/10.15502/9783958573093
http://predictive-mind.net/


Butz, M. V. (2017). Which Structures Are Out There?  - Learning Predictive Compositional Concepts Based on Social Sensorimotor Explorations
In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 8. Frankfurt am Main: MIND Group. doi: 10.15502/9783958573093 4 | 16

www.predictive-mind.net

that the subject can be placed into the object, which furthermore implies that the object is a kind of 
container. We thus have the concept composition of a ball that can be placed into the suitcase — ab-
stracted over spatial entities; the composition may specify that one entity is smaller than the other 
entity, such that it can be placed into the hollow area of the other entity.

The sentence continuation then makes a statement about why the described situation is true, as 
indicated by the word “because”, and further specifies the spatial relationship between the two, con-
firming the situation of the first part. For “fits into” to be applicable, the first entity needs to be smaller 
than the second entity, thus, in order to maintain a consistent overall simulation, “it” must refer to the 
ball [suitcase] depending on the adjective.

Note that we are processing the information online while reading. This can be nicely illustrated 
when considering the altered sentence: 

The suitcase  f it s  into  the  ba l l . 

When considering the situation described in this sentence, something feels wrong. From the de-
scription above it is not so hard to identify that the concept “fits into” is facing inconsistent objects: a 
ball is not a common container — especially not for objects! Moreover, it is unlikely that one has ever 
experienced a suitcase being placed inside a ball. However, the former aspect is probably the one that 
makes the sentence feel incorrect, because it calls upon our common sense knowledge and essentially 
makes us think “how can a suitcase be put into a ball!?” 

Let us consider one more sentence modification: 

The ba l l  f i t s  into  the  suitcase,  because  it  i s  l ight  [heavy] . 

What happens in our mind in this situation? Clearly, the adjectives “light” and “heavy” are referring 
to a weight concept, which is not tapped into in the first part of the sentence. Lightness and heaviness do 
usually not affect the concept of ‘fitting into’ something. However, before fully dismissing this sentence as 
semantically incorrect, we may develop explanations, such as weight restrictions, which may then allow 
us to use ‘fitting into’ in a more metaphorical manner. In this case, the metaphor transfers the ‘container’ 
and ‘fitting into’ concepts from the spatial volume realm into the weight scale realm, assuming there is a 
particular weight restriction (e.g. for traveling on an airplane). Interestingly, a common magnitude rep-
resentation has been proposed, which may help to understand this metaphor (Walsh 2003).

Throughout the rest of the paper I will refer back to this example to highlight the importance of the 
involved predictive encoding structures and the activation mechanisms, which determine the current-
ly most active predictive encodings. 

3  Fundamental Types of Predictive Encodings 

When considering predictive encodings, it seems worthwhile to contrast particular types of encoded 
predictions. Before introducing these types, however, I want to clarify how I use the terms predictive 
encodings and currently active predictive encodings. 

By predictive encodings I loosely refer to a set of neurons with their neural connections, which 
encode particular (predictive) relationships. Usually, a particular predictive encoding will be imple-
mented by a set of neurons in the brain. For simplicity, however, it suffices to think of an encoding as 
a neuron with its axon and its dendritic tree, which essentially encode how information is transferred 
from the pre-synaptically connected neurons via the dendritic tree, axon hillock, and axon to the 
post-synaptically connected neurons, without considering further details on how this works exactly 
(not to mention the important involvements and dynamics of the neural transmitters, oxygen supply, 
etc.). The encodings are predictive in nature because they structure themselves for the purpose of 
predicting other neural activities.
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Currently active predictive encodings are those encodings that are currently actively firing in that 
they are determining the currently unfolding cognitive processing dynamics. The simplest correspon-
dence in the brain may be a neuron that is producing an action potential. However, the active encod-
ings addressed in this paper are probably realized in the brain by a suitable (probabilistic) combination 
of well-timed firing neurons. For simplicity reasons, I write about sets of active encodings, which may 
seem to imply that an encoding can only be either on or off. However, what I am actually addressing is 
those encodings that are currently firing sufficiently strongly to influence the unfolding cognitive dy-
namics — thus, for example, activating the imagining of — or ‘thought’ about — a particular concept.

From research in psychology and cognitive science three fundamental types of predictive encodings 
have often been considered separately — albeit they are certainly strongly interactive: spatial predictive 
encodings, top-down predictive encodings, and temporal predictive encodings (Butz 2016; Goodale and 
Milner 1992; Holmes and Spence 2004). In the following paragraphs, I detail their distinction and 
their most typical interactions. 

3.1  Spatial Predictive Encodings

Spatial encodings have been distinguished from recognition-oriented encodings since the seminal papers 
of Mishkin et al. 1983, and later of Goodale and Milner 1992. However, we still do not know how our 
minds actually generate predictive spatial encodings from sensorimotor experiences. When I refer to spa-
tial predictive encodings, I mean spatial mappings that map different frames of references onto each other, 
essentially predicting that the information perceived or encoded in one frame of reference is related to the 
one perceived in the other frame of reference. The most basic forms of such mappings are concerned with 
our postural body schema (Butz 2014; Holmes and Spence 2004). At birth, and probably even before birth, 
a baby shows signs that it has some knowledge about its own body (cf. Rochat 2010). Indeed, such spatial 
mappings are important not only to map different sensory sources onto each other, but also to enable spa-
tially-oriented interactions with the environment. For example, very early and rudimentary spatial map-
pings appear to enable fetuses to insert their thumb into their mouth even in the womb.

Modeling such capabilities for enabling a continuous information exchange between different sen-
sory information sources (including visual, proprioceptive, and tactile) has shown that spatial map-
pings reflect the structure of the external three-dimensional space — or six-dimensional when also 
considering the orientation of an object or a limb, relative to, for example, the body mid-axis (Ehren-
feld and Butz 2013; Ehrenfeld et al. 2013; Schrodt and Butz 2015). The spatial encodings enable the 
dynamic activation of the currently applicable spatial mappings. Although it has not yet been shown 
rigorously, it may be the case that spatial mappings that are learned by means of the free energy-based 
inference principle, especially when enforcing sparse, compact encodings, develop a universal spatial 
encoding system that enables the mapping of any frame of reference imaginable onto any other, relat-
ed frame of reference, and which thus reflects the dimensionality of the outside environment.

From the psychological perspective there are various indicators that spatial encodings play a funda-
mental role in abstract spatial reasoning and spatial problem solving (Kneissler et al. 2014). Moreover, 
there are various indicators that suggest that objects are encoded in terms of relative spatial constel-
lations — rather than fully visually. Furthermore, the perception of or the thought about unfolding 
spatial dynamics — such as rotations — appears to be encoded distinctly from the actual sensors and 
entities, which may actually cause the perception of the unfolding spatial dynamics. The result is an 
intermodal crosstalk between the involved modalities, including tactile, visual, and motor modalities 
as well as the mere thought about some dynamics — such as the mental rotation of oneself or an object 
(Butz et al. 2010a; Janczyk et al. 2012; Liesefeld and Zimmer 2013; Lohmann et al. 2016).
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3.2  Top-down Predictive Encodings
Top-down predictive encoding is the most basic type of predictive encoding. It has been investigated 
in detail in the neuro-vision literature (Chikkerur et al. 2010; Giese and Poggio 2003; Rao and Ballard 
1998). From the psychological perspective, however, it seems that deeper differentiations in the top-
down encodings develop only after the fundamental spatial encodings are sufficiently well structured. 
Possibly one of the first characterizations of top-down predictive encodings comes from the Gestalt 
psychologists (cf. Koffka 2013), investigating to what extent we can deduce and imagine whole figures 
from particular sensory input. Point-light motion figures are a well-known example, in which we tend 
to perceive, for example, a walking human person although we only see a few points of light that are 
attached to particular body parts. Even the size, agility, gender, and emotions of the person can to 
some extent be deduced solely by observing the motion dynamics (cf. e.g. Pavlova 2012). 

Note that top-down predictive encodings typically encode predictions of particular aspects of a 
stimulus while ignoring others. For example, specialized areas in the visual cortex have been identified 
that selectively process color, visual motion, or complex edges. Indications of similar somatosensory 
property encodings in a corresponding ventral stream have been identified as well. Top-down predic-
tive encodings may thus be generally characterized as predictions about typical perceivable properties 
of some entity — and these property predictions may address any available modality — including 
bodily and motivational signals — as well as combinations of modalities. In combination with spa-
tial mappings, the currently active top-down encodings may be flexibly projected onto the currently 
relevant sensory-grounded frames of reference — such as onto the correct position in the retinotopic 
frame of reference or onto the correct position in a tactile, somatosensory body map. 

3.3  Temporal Predictive Encodings
The third types of predictive encodings, which strongly interact with spatial and top-down predic-
tive encodings, are temporal predictive encodings. Essentially temporal predictive encodings predict 
activity changes in the two other types of fundamental predictive encodings. The first temporal pre-
dictive encodings that develop in our brain are probably those concerning our own body — which 
muscular activities have which body postural and other perceptual (mainly proprioceptive) effects? 
For example, it has been shown that the visual effect caused by saccades and the opening and closing 
of one’s eyes is anticipated by an information processing loop through the thalamus (Sommer and 
Wurtz 2006). Underlying this processing principle is the reafference principle (von Holst and Mittels-
taedt 1950): corollary discharges of motor activities are converted into sensory predictions of the con-
sequent effects. This principle was further spelled-out by the theory of anticipatory behavioral control 
and related theories from cognitive psychology (Prinz 1990; Hoffmann 1993). 

Note that temporal predictive encodings — irrespective of where they apply and what exactly they 
predict — process information over time and thus predict upcoming changes. The nature of the changes, 
however, may differ in very fundamental ways, ranging from sensory changes (such as a change in color, 
in stiffness, in vibration, in loudness etc.) to abstract property changes (such as weight, content type, 
amount, etc.) and spatial changes (such as displacements and changes in orientation). Temporal predic-
tive encodings can be expected to be active together with any top-down and spatial predictive encodings, 
effectively encoding the currently imaginable potential property or spatial changes, respectively.

Take the example of the ball with some of its activated, characteristic spatial, temporal, and top-
down encodings shown in Figure 1a. Top-down predictive encodings will, for example, generate vi-
sual predictions of roundness, and possibly more concrete images, such as those of a soccer ball. 
Pre-activated temporal predictions may anticipate the consequences of the ball interacting with other 
objects as well as typical motion dynamics (e.g. starting to roll, bounce, fly, react to a kick in a certain 
way, etc.). Finally, without additional information, active spatial predictive encodings may predict a 
typical standard ball size and a somewhat central location in front of us.
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Imagine now the situation where we watch a ball lying outside — say on a sidewalk — and it sud-
denly begins to role in one direction seemingly without any cause. What would be the constructed 
explanation? Probably we come up with the explanation that it must be a windy day and the wind 
must have forced the ball to start moving (possibly supported by an additional suitable slope of the 
sidewalk). The activation of the rolling temporal predictive encoding requires the presence or the 
activation of a force. Initial experiences of such forces are generated by our own motor behaviors (ex-
periencing bodily restrictions in the womb, for example). Over time, top-down predictive encodings 
can be learned that generalize more behaviors to forces, which may be generated by our motor be-
havior but also by other means. These encodings in turn predict the activation of temporal predictive 
encodings of the expected changes (including spatial and property changes) that are typically caused 
by the encoded forces. For example, a “pushing force” encoding can develop that predicts, on the one 
hand, motor behavior activities that can generate such a force (a top-down prediction) and, on the 
other hand, changes in motion of the entity that is being pushed by the force (a temporal prediction). 

4  Event-Oriented Conceptual Abstractions
While the proposed fundamental types of encodings may be able to encode all kinds of predictions, 
and top-down predictions typically generate abstractions, several additional psychological theories 
suggest that in order to build conceptual schemata about the environment, the continuous sensorim-
otor information flow needs to be segmented systematically. 

The theory of anticipatory behavioral control (ABC, Hoffmann 1993; Hoffmann 2003), the com-
mon coding approach (Prinz 1990), and the theory of event coding (TEC, Hommel et al. 2001) all 
imply that actions are encoded in close relation to the action effects they tend to produce. ABC further 
postulates that such commonly encoded action-effect complexes are endowed with the critical condi-
tions that enable the action-effect complex to take place. For example, an object needs to be in reach in 
order to be graspable, or an object must not be too heavy such that it is still movable. A computation 
model of the ABC theory has indeed shown high learning capacity and the potential to model typical 
adaptive behavior, such as latent learning in a maze, which is observable, for example, in rats (Butz 
2002; Butz and Hoffmann 2002). On the other hand, the common coding approach, and its further 
formalization into TEC, emphasizes that action-effect complexes are co-encoded in a common, ab-
stract code, which coordinates, anticipates, and controls the action-effect complex. 

All three theories essentially emphasize that our brains seem to develop encodings of distinct mo-
tor activity-effect complexes, which can be selectively activated dependent on the current context. As 
detailed above, temporal predictive encodings often result in predictive codes of motor activities and 
their effects. Moreover, motor activities may be substituted by force-effect encodings, which may in-
deed be the type of encoding envisioned by TEC. Thus, an event can be understood as the application 
of a particular force in a particular situation.

A more general definition of an event originates from studies on event segmentation. The event 
segmentation theory (EST), which was derived from these studies, characterizes an event as “a seg-
ment of time at a given location that is conceived by an observer to have a beginning and an end”. 
(Zacks and Tversky 2001, p. 3). Later, EST was refined further such that event segments were related 
to unfolding predictions and it was suggested that “[…] when transient errors in predictions arise, an 
event boundary is perceived”. (Zacks et al. 2007, p. 273). 

When considering motor activities, a simple event may thus be understood as a simple, unfolding 
motor activity, such as a grasp. EST has not been closely related to theories that focus on motor ac-
tions, such as ABC or TEC. However, when considering all of these theories in the light of predictive 
encodings, it appears there is a close relationship: an event may be characterized by a particular set 
of predictive encodings starting with the onset of this set and ending with the offset of this set. The 
(also predictive) encodings of the situational properties at which point a particular event typically 
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commences and at which point it may end then characterize the context, the necessary aspects that 
can bring the event about, and the ones that can stop it. 

Reconsidering the ball example, an event encoding may characterize the typical behavior of a roll-
ing ball by temporal predictive encodings of spatial displacements and of accompanying visual mo-
tion signals, which indicate the rolling motion. Moreover, motion onset, that is, the prediction of the 
onset of the particular temporal predictive encoding of spatial displacement, may be predictable by a 
top-down force encoding, which can be activated given, for example, the impact of any other moving 
entity — including one’s foot but also a strong gust of wind.

Although the exact formulations of how such event-oriented predictive encodings may develop from 
basic spatial, top-down, and temporal predictive encodings still need to be spelled-out in detail, a recent al-
gorithm that builds such event encodings from signals of temporary surprise seems promising (Gumbsch et 
al. 2016). One critical aspect of the algorithm is the formulation of temporary surprise, which corresponds 
to a temporal state of large free energy but which is preceded and succeeded by low free energy states in 
the involved predictive encodings. Interestingly, this approach was additionally motivated by research on 
hierarchical reinforcement learning and the challenge to automatically form conceptual hierarchies from 
sensorimotor signals (Butz et al. 2004; Simsek and Barto 2004; Botvinick et al. 2009).

5  Continuously Unfolding Predictive Encoding Activities 

When assuming the existence of a complex network of the described predictive encodings, the cur-
rently active encodings constitute the currently considered concepts and their composition. While 
this may sound intuitively plausible, it is still unknown how these concept compositions are selectively 
activated, maintained, and dynamically adapted over time. One could assume the basic mechanism 
would be free energy-based inference. But how does the processing unfold concretely? 

From modeling flexible behavioral control and the maintenance of a postural body image over time 
(Butz et al. 2007; Ehrenfeld et al. 2013; Kneissler et al. 2014) and from the close relationship of these 
mechanisms to free energy-based inference (Kneissler et al. 2015), evidence has been accumulated 
that suggest that at least a three-stage information processing mechanism may continuously unfold 
over time. First, the currently active encodings may be considered as the prior predictions about the 
current environmental state, including the state of one’s body. Next, sensor information integration 
may take place, yielding local posterior activity adaptations, taking the uncertainties of the prior pre-
dictions and sensory information content into account. 

After sensor information integration, the predictive network strives towards global consistency, 
adapting its active predictive encodings further for the purpose of increasing consistency between the 
active encodings themselves, that is, to minimize internal free energy. As a result, the active encodings 
move toward a distributed attractor, which comes in the form of a free energy minimum. Note that it 
seems impossible to reach a global minimum in such a distributed system, in which only local interac-
tions unfold. Note furthermore that this process naturally takes all knowledge about the environment, 
which is represented in the learned predictive encodings, into account. As a result, local minima, that 
is, local attractors, will be approximated, which take the predictive activities only from connected en-
codings into account. Suitably modularized partitions of information contents, such as the spatial and 
top-down encodings, may optimize this distributed free energy minimization process.

In relation to the concept of a Markov blanket , which is used by Friston and others to derive the 
theory that the brain develops a predictive model of the (indirectly perceived) outside environment 
(Friston 2010), consistency enforcement may be thought of as a process during which distributed, 
internal Markov blankets are at play. That is, while striving for local consistencies in the currently ac-
tive network of predictive encodings, local adaptations are made, which take the predictive activities 
of the connected predecessors, successors, and the predecessors of the successors into account. As a 
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result, the adaptations yield approximate locally consistent (within the respective Markov blanket) but 
distributed state estimates, which approximate the theoretical, global free energy minimum.

Finally, following the reafference principle, temporal predictions will be processed, generating the 
next prior predictions. When this anticipation of next sensory information is expanded to all active 
temporal predictive encodings — including those that do not depend on one’s own motor behavior 
but that depend on the estimated presence of other forces in the environment and the presence of 
current motion — then essentially the temporal dynamics of the environment are predicted. Given 
that the global posterior reflects the actual environmental model rather well and given further that the 
temporal predictive encodings are relatively accurate, hardly any surprise will be encountered when 
processing the next sensory information and the system will be so-to-say ‘in-sync’ with the world. In-
correct temporal, spatial, or top-down predictions, on the other hand, will yield larger surprises, that 
is, larger free energy when processing the incoming sensory information.

The implications of the sketched-out process are diverse. Let us reread the first part of the sentence 
about the ball and the suitcase above. What will actually happen according to the sketched-out process 
when considering a word-by-word processing level? The article “the” prepares the predictive encodings for 
a concrete concept, generating predictions about the next word. Spatial predictive priors will be uniform, 
or rather will estimate an uncertain central default location. Top-down predictive priors remain unspecified 
(for example, a uniform distribution in the respective available encodings). Next, the noun “ball” triggers 
the activation of a more or less concrete conceptual encoding of some sort of ball with its typical properties. 
Some of the different types of active predictive encodings are sketched-out in Figure 1a. Note also how the 
article will be merged with the ball, leading to the assumption that the sentence refers to one concrete ball. 
Thus, on the one hand, one concrete entity code needs to be activated, while, on the other hand, this entity 
may be associated with all imaginable top-down, predictive ball entity properties. Because these more con-
crete encodings are very diverse, the activated focus will remain on the abstract but particular ball concept. 
It remains to be shown how a concrete, but unspecified entity is imagined by our brain. Adhering to our 
distinct types of predictive encodings, spatial predictive encodings should restrict the imagined entity to 
one location, while all imaginable ball properties are associated with this activated location via the activated 
top-down predictive encodings characterizing the term “ball”. 

Next, “fits into” will imply that the ball can be put or is inside another entity. Thus, another rela-
tive spatial predictive encoding must be activated, which relates a yet undefined entity and the ball, 
such that the dimensions of the ball fit into the other entity’s container part. In fact, the activation of 
the entity will most likely activate predictive encodings that characterize a containment property, as 
sketched-out in the temporal interaction consequence encodings in Figure 1b for the suitcase. More-
over, active temporal predictive encodings will generate the next prior, which essentially leads to the 
expectation that the container entity will be specified.

Finally, “the suitcase” indeed makes the expected container concrete, causing the activation of the suit-
case concept as a particular example of a container. Thus, the container concept is integrated into the suitcase 
concept. Moreover, the other predictive encodings are verified and adjusted. For example, the predictive 
encodings that characterize the size of the ball will be adjusted such that the size of the ball is smaller than 
the size of the suitcase, essentially increasing the consistency of the imagined whole concept composition. 

6  Motivations, Goals, and Intentions
I have focused on the information processing and neural activity adaption mechanisms in the above para-
graphs. When considering action decision making, however, active inference mechanisms become neces-
sary. Free energy-based formulations of active inference take imaginable future states into account. The ten-
dency to achieve particular futures comes from the principle that internal predictions expect unsurprising 
outcomes. Combined with homeostatic internal states, the result is a system that strives to sustain internal 
homeostasis, because very imbalanced drives cause very ‘surprising’ and thus unfavorable signals.
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This principle is closely related to the principle of living systems as autopoietic systems (Maturana 
and Varela 1980). While the general principle is closely related to reinforcement learning, the formu-
lations avoid the introduction of a separate term that characterizes reward. Rather, reward is integrat-
ed into the free energy formulations, such that extrinsic reward is akin to a successful avoidance of 
overly surprising signals, which can be, for example, unfavorable signals about one’s own bodily state. 
Various artificial system implementations have successfully generated agents that are self-motivated 
and that are both curious and goal-oriented at the same time. For example, latent learning in rats is 
fostered by an inherent curiosity drive, while the gathered knowledge can then be used to act in a 
goal-directed manner (Butz et al. 2010b). The maintenance of a maximally effective balance between 
the two components, however, remains to be controlled by an appropriate choice of parameter values 
(Butz et al. 2010b; Friston et al. 2015; Hsiao and Roy 2005).

As a result, from the perspective of the described predictive encoding network with its unfolding, dy-
namically adapting current activities, it seems necessary that the currently active encodings about the con-
sidered situation also need to enable the partial simulation of potential futures forward in time. The pro-
posed hierarchical activity encoding based on event encodings seems to be ideally suited for this matter, 
because it enables planning and reasoning on abstract predictive encoding levels. For example, when we 
want to drink out of a glass in front of us, we first need to reach for and grasp the glass and then transport it 
suitably to our mouth, tilt it properly, and finally drink out of it in a coordinated manner. Thus, the final goal 
pre-determines the successive subgoals of being in control of the glass and so forth (Gumbsch et al. 2016). 
Interestingly, cognitive psychological modelling literature suggests that the encodings of spatial relations 
between entities (such as the hand, the glass, and the mouth) and their potential space-relative interactions 
seem to be particularly well-suited for cognitive reasoning (Kneissler et al. 2014). It may indeed be the case 
that spatial predictive encodings, which must have evolved primarily for the control of flexible interactions 
with objects, tools, and other entities in space, are recruited by our brains to enable other planning and rea-
soning processes as well. Note that such spatial encodings need to be highly swiftly and flexibly adaptable 
to the current circumstances, to changes in these circumstances, and for enabling the consideration of such 
changes caused be own motor activities. As a result, the imagining of — or thoughts about — entity inter-
actions becomes possible in a similarly swift and flexible manner.

Combinations of the present and considered futures then lead us to act — to the best of our knowl-
edge — in our own best interest. We act intentionally to minimize uncertainties about achieving our 
desired goals. Moreover, we do this on all levels of abstraction that are imaginable by our minds. Pri-
orities certainly vary and depend on the extent to which we prefer particular states and dislike others. 
Nonetheless, this point of view gives us an inherent and highly individual intentionality, which essen-
tially determines our character.

Let us go back to the ball again. When we want to project the ball into the goal, we may attempt 
to kick it when we are in range — because we want to produce a flying ball event which may end, if 
suitably executed, with the ball entering the goal’s interior. Similarly, when we go on a trip and pack a 
suitcase, we activate predictions about the presence of the items we pack into the suitcase wherever we 
intend to go with the suitcase. If we expect to play with the ball when we have reached the destination, 
we may consider packing the ball and thus consider if the ball fits into the suitcase. Given it fits, we 
may actively put the ball into the suitcase by using, for example, our hands. Note again how first the 
displacement event is activated, which then causes the activation of particular means, such as par-
ticular motor actions, that are believed to cause the displacement. Note also that as learning strongly 
depends on the types of experiences that have been gathered, the developing predictive encodings will 
strongly depend on the generated active inferences, which, vice versa, depend on the available predic-
tive encodings, that is, the gathered knowledge about the world and about our ability to interact with 
it and to manipulate it. As a result, we will choose those means to put the ball into the suitcase that we 
are most used to (for example, by means of our hands or our feet). 
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7  Perspective Taking, Hypothetical Thinking and Role Taking
As our bodies and our ‘selves’ become “a public affair” over the first years of our lives, so does our behavior 
and our social interactions with others (Rochat 2010). In fact, it appears that we tend to constitutionalize 
our social interactions in such a way that an imaginative entity, that is, the ‘public’ as a whole is the one 
that is perceived as (partially) watching us (Tomasello 2014). As we have particular expectations about 
the general knowledge of others — such as that everybody knows how to open a door, how to count, or 
the common words of his or her mother tongue — we have particular expectations about social rules of 
interactions and basic tendencies for interactions, even with nearly complete strangers within a society 
or a particular culture (Tomasello 2014). These social capacities, which are strengthened and shaped 
further by our versatile communication capabilities, inevitably enable us to view ourselves not only from 
the geometric (that is, purely spatial) but also form the epistemic perspective of somebody else. And this 
‘somebody else’ does not even need to be a person but may be an imagined knowledge entity. 

A somewhat similar capacity develops when mastering tool use. The tool temporarily becomes part of 
our body, thus subjectifying the tool (Butz 2008; Iriki 2006). From a social cooperative perspective, we can 
act as a tool — as when handing over the butter at the breakfast table. Similarly, we can perceive our body 
as a tool, as when we attempt to undertake a task with our hands that is usually accomplished with the help 
of a particular tool. In both of the latter cases, we essentially objectify our body — or a part of it — as a tool. 

When manipulating and interacting with objects — possibly with the help of tools — as well as 
when interacting with (and sometimes also manipulating) others, we experience particular interac-
tion roles and the currently involved goals. When we are the one to initiate and control an interaction, 
we are the intentional actor, while the manipulated object or person is the recipient. Likewise, we may 
be the recipient and another person may be the intentional actor. This is probably the reason why we 
tend to subjectify objects when they interact with us by chance in peculiar ways — such as the infa-
mous apple that is said to have fallen onto Sir Isaac Newton’s head ‘giving’ him the idea of universal 
gravity. Due to the peculiarity of the interaction, we tend to subjectify the object and thus assign in-
tentions to it — essentially in the same way we attribute intentions to the behavior that we observe in 
other humans. 

It seems that these social interactions and tool manipulation capabilities are thus the key to enable us 
to take on different perspectives and thus to flexibly switch roles (actor, recipient, means, space, time) 
mentally. As a further consequence, we become able to learn the human language we are confronted 
with. This is probably the case because human languages offer a means to satisfy our drive to commu-
nicate with others in order to coordinate social interactions successfully. The grammar of a language 
essentially constrains how we assign roles to the individual entities addressed in a sentence, including 
their relationship in space and time and the particular interaction addressed. The prior assumption of 
the pre-linguistic mind is that verbalized states of affairs in the environment and changes in the environ-
ment typically refer to particular entities, relative spatial relations between entities, and particular inter-
actions of entities (cf. also Knott 2012). In all these cases, it is important to clarify exactly which entities 
are referred to and what role they play. The detection of ambiguities during communication leads to the 
addition of words and further learning of the grammar the developing child is confronted with. 

Let us re-consider the original sentence and analyze the second part of it from a reasoning perspec-
tive with the ability to take on different perspectives and thus the ability to construct counterfactuals 
and the involved hypothetical alternative scenarios. 

The ba l l  f i t s  into  the  suitcase,  because  it  i s  smal l . 

The word “because” suggests that there is a particular property of one of the entities that makes 
the first sentence true and if it was changed to another property — typically the opposite — then the 
sentence would be false. To simulate this, we need to be able to change our image of one or the other 
object. The property put forward is of type “size” and the term “small” implies being “not large”. The 
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property can be directly associated with the constructed mental situation of one entity fitting into an-
other entity. Revisiting the constructed network of active predictive encodings (Figure 1c) and chang-
ing the size of either object allows the construction of two counterfactual situations. Changing the 
ball to a larger ball may make it not fit, because the combined relative spatial and size encoding would 
yield a spatial overlap of the entities, implying that the ball does not fit. On the other hand, changing 
the suitcase to a larger suitcase would not change the truth of the first part, because no overlap would 
occur and the ball would still fit. Thus, it is much more plausible that “the ball” is referenced by the 
pronoun.

Let us now change the example to show that the same principle generally can apply in a social 
context with particular persons or a group of persons constituting particular entities. Consider the 
following nearly equivalent sentence in a social context: 

The Smith fami ly  f it s  into  the  discuss ion group,  because  it  i s  ins ight fu l . 

Note how the sentence specifies two entities, which are actually a group of people: The “Smith family” 
and the “discussion group”. Again, the first entity is said to fit into the second entity — where “fits into”, as 
above, implies that the first entity can be inserted or added to the second entity, where the second entity 
functions as a container. In fact, a “discussion group” allows the addition of more people, so it can func-
tion as a container. Fitting into the social group in this case, however, is not a matter of ‘size’ but of ‘social 
competence’. This is exactly what the second part of the sentence implies: it argues that the Smith family 
fits because of its insightfulness. The opposite social property — something like “dull” or “unwise”, that is, 
“not insightful” — would probably not fit into a discussion group, where insight and fruitful discussions 
are typically sought. Thus, the sentence can generally be processed in a manner similar to the ball and 
suitcase sentence, constructing an active predictive encoding network (an attractor that indicates consis-
tency) and disambiguating the ‘it’ by imagining the two counterfactual options, that is, the ‘Smith family’ 
or the ‘discussion group’ being not insightful. As a result, it is much more likely that the ‘Smith family’ is 
referenced by the pronoun, although the other interpretation cannot be fully excluded. 

8  Conclusions 
While predictive coding intuitively makes a lot of sense to many of us, I have argued that it is nec-
essary to further describe the most likely kinds of predictive encodings that are developing in our 
brains and how they interact. I have argued that three basic types may constitute the building blocks 
of our thoughts: top-down, spatial, and temporal predictive encodings. Moreover, I have argued that, 
starting with basic predictive encodings of the encountered sensorimotor experiences, event-oriented 
abstractions can lead to the development of event and event boundary encodings, which can lead to 
conceptual encodings of the relevant properties to bring particular events about. 

Moreover, I have argued that the simulation of a particular thought, a particular situation, or a par-
ticular event in a particular context is essentially encoded by a network of active predictive encodings. 
While, for example, reading a sentence, a constructive process unfolds, which attempts to activate those 
predictive encodings that form a maximally consistent, interactive network. The network reflects what 
is believed to be the sentence’s content, including its implications. By changing parts of the activated 
predictive encodings, it is possible to alter the imagined situation in meaningful ways and to probe the 
resulting consistency. As a result, it is possible to argue semantically about certain events, situations, and 
statements. Our developing tool usage and social capabilities and the involved encodings seem to sup-
port the necessary perspective taking abilities — and thus the ability to imagine conceptual environmen-
tal interactions in the past, the future, and by others (Buckner and Carroll 2007). Due to the event-ori-
ented predictive encodings, such imaginings are conceptual because the involved predictive encodings 
focus on those aspects of the environment that are believed to be relevant for particular situations in and 
interactions with the world. Moreover, mental manipulations of such imaginings allow the probing of 
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situational changes and their effects, including property, spatial, and temporal changes — thus enabling 
planning, reasoning, and the pursuance of hypothetical thoughts. Finally, the social perspective as well 
as our tool use abilities enable us to objectify ourselves and thus to develop explicit self-consciousness. 

Clearly, details of the proposed theory need to be further defined in the near future, in order to 
verify the involved hypotheses and to further differentiate the identified kinds of predictive encodings. 
The best way to go forward may be to develop actual implementations of artificial cognitive systems 
in virtual realities, in addition to the necessary further interdisciplinary philosophical, neuro-psycho-
logical, and linguistic research. 

Figure 1: Illustrations of the active predictive encoding networks for the thought about “the ball” and “the suitcase” as 
well as the composition with the connecting information “fits into”. Note the predictive interactions and the consistencies 
between the illustrated active encodings. The visualized encodings include top-down predictions about the visual appear-
ances, spatial predictions about where, relative to the observer (and relative to the other object), one object may be present, 
as well as what size it may be. Temporal predictive encodings predict interaction consequences as well as potential motion 
dynamics. In the concept compositions these may annihilate each other, indicating the thought of the ball lying stably 
inside the suitcase with unlikely current motion dynamics.

Figure 1 a: Sketch of predictive coding network for  
“the ball”.

Figure 1 b: Sketch of predictive coding network for  
“the suitcase”.

Figure 1 c: Concept composition: “The ball fits into the suitcase.”
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