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Affective Value in the Predictive Mind

Sander Van de Cruys

Although affective value is fundamental in explanations of behavior, it is still a 
somewhat alien concept in cognitive science. It implies a normativity or direc-
tionality that mere information processing models cannot seem to provide. In 
this paper we trace how affective value can emerge from information processing 
in the brain, as described by predictive processing. We explain the grounding 
of predictive processing in homeostasis, and articulate the implications this has 
for the concept of reward and motivation. However, at first sight, this new con-
ceptualization creates a strong tension with conventional ideas on reward and 
affective experience. We propose this tension can be resolved by realizing that 
valence, a core component of all emotions, might be the reflection of a specific 
aspect of predictive information processing, namely the dynamics in prediction 
errors across time and the expectations we, in turn, form about these dynamics. 
Specifically, positive affect seems to be caused by positive rates of prediction 
error reduction, while negative affect is induced by a shift in a state with lower 
prediction errors to one with higher prediction errors (i.e., a negative rate of 
error reduction). We also consider how intense emotional episodes might be 
related to unexpected changes in prediction errors, suggesting that we also build 
(meta)predictions on error reduction rates. Hence in this account emotions ap-
pear as the continuous non-conceptual feedback on evolving — increasing or 
decreasing — uncertainties relative to our predictions. The upshot of this view 
is that the various emotions, from “basic” ones to the non-typical ones such as 
humor, curiosity and aesthetic affects, can be shown to follow a single underlying 
logic. Our analysis takes several cues from existing emotion theories but deviates 
from them in revealing ways. The account on offer does not just specify the in-
teractions between emotion and cognition, rather it entails a deep integration 
of the two.
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Happiness is neither virtue nor pleasure nor this thing nor  
that, but simply growth. We are happy when we are growing. 

— W.B. Yeats

In his seminal work on the relation between cognition and emotion, Robert Zajonc (Zajonc 1980) 
wrote that “preferences need no inferences”. If this were true, affect would never find a place in the 
currently popular attempt at a unified model of cognition, called predictive processing (PP), that holds 
that inference is all the brain does (Clark 2013; Friston 2010). Indeed, there is so far little work on 
affective value and affective experience in PP (but see Barrett and Simmons 2015; Seth 2013). Nev-
ertheless, PP has in recent years been shown to hold a lot of promise in blending perception, action 
and cognitive beliefs into a coherent, well-founded framework, pleasingly taking down the walls be-
tween these subfields. Although plenty of fundamental issues concerning its computational articula-
tion and biological implementation remain (e.g., see commentaries on Clark 2013), as a unified theory 
of cognition it arguably fares better than any other alternative we have. Crucially, if it is to become an 
overarching framework of the mind-brain, emotions, so central to existence and survival, somehow 
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have to fit in, including their experiential aspects. However, the unifying logic of PP—a single com-
putational principle for the whole brain—seems directly opposed to the popular notion in emotion 
theorizing that emotions are a bricolage of modules adapted to very specific challenges in our an-
cestral environment. Rather than built around a single neat, optimal logic, emotions are assumed to 
be a messy, ad hoc bag-of-tricks. In practice, it has, however, proven difficult to distinguish different 
emotion ‘modules’ in the brain, even at the subcortical level, which has led some emotion theorists 
(e.g., Barrett 2014; Carver and Scheier 1990; Moors 2010; Russell 2003) to abandon this route in favor 
of a view that assumes fewer fundamental affective ‘building blocks’. The aim of the current paper is to 
show that this movement may afford new ways to integrate emotion in PP. Much of this is, as we will 
see, thanks to the clear evolutionary rationale that is at the core of PP. At first blush, this may seem to 
lead to a concept of value or emotion that seems rather alien or counter-intuitive to how we usually 
think about emotional value, but it will turn out to have much in common with existing theories of 
emotions. Most importantly, cognition (information processing) and emotion will be shown to be 
entangled from the start.

First a brief note about terminology. Throughout this paper, we will generally use the broader term 
“affect” because it does not constrain our explanandum to so-called “basic emotions”, to conscious 
“feelings”, to “moods” or to “reward”. While we will suggest how to differentiate between these affective 
concepts in the course of the paper, we assume a basic “affective value” that is shared by all of these. It 
is the cause of this core of emotions that we attempt to explain. The exercise we undertake in this paper 
is to examine how the affective dimension of our mental life can be understood without positing more 
principles than those provided by PP. To anticipate a key thesis of this work, we propose the origin 
of emotion does not lie in being able to infer or predict (the causes of) bodily changes, as accounts of 
emotion as “perception of the body” argue (Barrett and Simmons 2015; Seth 2013). Rather, it is situ-
ated in how the brain succeeds or fails to do so over time (i.e. prediction error dynamics). We do not 
deny the importance of bodily arousal in the resulting emotions, but we identify error dynamics as the 
fundamental cause of emotions. Given that, following PP, prediction errors are ubiquitous processing 
products, the implication will be that emotions can emerge from any processing, not just that about 
the body. 

1  Predictive Processing 

PP holds that an organism is constantly, proactively predicting the inputs from its environment. Since 
it has no independent access to objective features in the world, all an organism can do is learn pat-
terns in its input generated by statistical regularities in the environment and by its own actions (Clark 
2013). While in principle there may be different ways in which prediction could modulate perceptual 
processing, PP proposes a well-defined computational scheme and a single guiding principle (Friston 
2010). The scheme posits that every level of the perceptual hierarchy predicts activity in the level be-
low, in effect explaining away input that is consistent with it such that only mismatches remain. These 
mismatches, called prediction errors, are sent upwards to update future top-down predictions. Much 
of the brain’s predictive activity has a limited time frame. It predicts current input by inferring as-
sumed causes of these inputs. The higher up in the hierarchy, the more time and space predictions can 
span, because they can work with regularities defined on lower levels. In this way lower level predic-
tions model the faster changing dynamics, while those higher up track and recreate slower changing 
dynamics.

PP thus completely inverts the classical bottom-up view of the perceptual hierarchy. The brain 
actively generates the perceptual world (predictions are based on generative models, i.e., models that 
can generate the input), and perceptual input is in fact the feedback on how good these constructed 
models are. Although anatomically prediction errors are conveyed by feedforward connections, func-
tionally they are the feedback, sanctioning the models we construct of the outside world, in line with 
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the view of perception as controlled hallucination (e.g., Horn 1980). The fundamental underlying 
principle guiding this process of iterative, hierarchical matching of predictions with inputs is that 
of prediction error minimization (PEM). Perception is inference to the best prediction, the one that 
minimizes prediction errors. Simultaneously, learning will use remaining prediction errors to home in 
on the best predictions for the current context, thereby reducing future prediction errors. Hence, we 
perceive what led to successful predictions in the past (see also Purves et al. 2011).

1.1  Action
There is one other, complementary way of minimizing prediction errors, which does not focus on im-
proving predictions, but rather on modifying the things predicted, through action. In this framework, 
movements serve to bring the input closer to our prior expectations (often called ‘active inference’). 
More specifically, they are induced by their expected exteroceptive and proprioceptive consequences 
(Friston et al. 2010), much in line with James’ “anticipatory image” (James 1890) and with the ideo-
motor principle (Hoffmann 2003). Like object-level, conceptual predictions (“an apple”) unpack to 
a myriad of lower-level featural predictions (“green”, “curved”, …), so can high-level expected states 
(“goals”) be unpacked in specific component predictions and eventually in expected proprioceptive 
states. When the latter are compared to afferent signals of muscle spindles at the spinal level, they 
generate sensory prediction errors to be reduced by motor neuron activation, in a classical reflex arc. 
Hence, motor commands are replaced by expectations about the state of proprioceptive sensors. At a 
higher level these ‘commands’ stem from beliefs about state transitions (active inference). A certain 
perceptual stimulus may be predictive of a state transition through the agent’s intervention (an affor-
dance, if you will), that can be actualized by unpacking this prediction to proprioceptive states.

Bear in mind that, from this inference system’s perspective, there is no intrinsic difference between 
the external and the internal milieu. With the same predictive machinery, generative models can be 
learned about changes in interoception, based on input from somatovisceral sensors (Seth 2013). 
Likewise, internal ‘actions’, such as autonomic responses, are brought about by similar principles as 
‘external’ actions. They consist of changing a bodily set-point or expectation (e.g., temperature) so 
autonomic reflexes (e.g., shivering) can be elicited.

We limit ourselves to this very brief sketch of PP and refer to the many in-depth resources for more 
details about its computational mechanisms and how these may map onto neural circuits and their 
plasticity (Bastos et al. 2012; Friston 2003, Friston 2010). Further implications of the framework will 
be discussed to the extent that they connect to value and emotional relevance.

1.2  Prediction and Homeostasis
Organisms maintain their own organization (order) in the face of constant fluctuations in the envi-
ronment through homeostasis. The bioenergetic regulation of homeostasis in essence makes sure that 
the organism is bounded in the physiological states it can be in, which allows it to resist the dispersive 
effect of the second law of thermodynamics (Schrödinger 1992). This can be considered the most 
fundamental goal of any organism, though of course, it is not an intentional one. It is just a result of 
the fact that organisms that do not tend to homeostasis will lose existence as a unit. One can view ho-
meostasis as a limited set of expected interoceptive states ’discovered’ by evolution, because they have 
proven to enable continued existence (Friston 2010; Pezzulo et al. 2015). Therefore, survival “depends 
upon avoiding surprising encounters and physiological states that are uncharacteristic of a given phe-
notype” (Friston 2009).

The key problem is that organisms generally do not have direct ways to change these internal states 
(Pezzulo et al. 2015). They may be able to shiver when their body temperature drops, but they cannot 
replenish glucose levels without interaction with their environment. This implies that they actually 
need to build a generative model for these expected internal states, by learning about the different 
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ways these internal states can be ‘caused’. It is only because the organism needs to go through its envi-
ronment to fulfill the interoceptive expected states, that it needs (exteroceptive) perception and action. 

It needs perception to infer hidden states of affairs in the world that may cause the expected in-
ternal states. And it needs action to control those states of affairs. As hinted in the section on action 
above, actions are also represented as predictions or beliefs, specifically about transitions that one 
happens to be able to control (control beliefs). As we saw earlier, this generative model, in service of 
the body, is constructed with the PP scheme. The models needed for this may be rudimentary and 
fixed or complex and flexible, depending on complexity and volatility of the organism’s Umwelt. For 
some organisms the causal chain of expected internal states might go through very high-level and 
context-dependent states (e.g., social interactions). At that point, it pays to build deep models incor-
porating this strong contextualization of interoceptive states (Pezzulo et al. 2015). 

Simpler organisms may not need such strong, flexible contextualization, because internal states 
are reliably caused by stable states in their environment. Even in that case homeostasis is not actually 
static or merely reflexive. If reliable predictive information is present, it is more efficient to anticipate 
changes with compensatory action (Heylighen and Joslyn 2001). For example, when the single-celled 
gut bacterium E. coli is ingested by mammals it will respond to the temperature shift by not only 
upregulating heat shock genes (to compensate for temperature) but also by downregulating genes for 
aerobic respiration. They use the temperature information (when entering the mouth) to predict that 
they will end up in a low oxygen environment, i.e., gastrointestinal tract (Freddolino and Tavazoie 
2012). They encode something about the cause of this particular stimulation (ingestion), however ru-
dimentary. As Freddolino & Tavazoie (Freddolino and Tavazoie 2012, p. 369, my emphasis) describe: 
“microbial behaviors are as much responses to the meaning of a specific environmental perturbation 
(viewed in the context of their evolved habitat) as they are responses to the direct consequences of that 
perturbation”.

For E. Coli the predictive “learning” of these regularities does not take place within the organism 
but within populations. Through natural selection the predictive environmental relation can be em-
bodied in the molecular regulatory networks of the cell (Freddolino and Tavazoie 2012). Environmen-
tal regularities left their imprint on the organism’s constitution, just because a constitution embodying 
these regularities increases fitness in a Darwinian sense. In analogy to PP, evolution can be considered 
as an error-correcting code, except that the errors are not represented at the level of a single organ-
ism1. But note that the normative character—the value—originates in the organism (that maintains 
its internal states better or worse), not in the process of evolution (Deacon 2011). The boundedness 
in the homeostatic set, the ‘mother-value of all values’ (Weber and Varela 2002) also gives the whole 
predictive endeavor its normativity. Once the organism engages itself to make a prediction, there is 
something at stake (cf. value), because of the link from the quality of predictions to basic organismic 
functioning. There is a vested interest for the prediction to materialize. In complexer animals, “the 
gross bodily form, biomechanics, and gross initial neural architecture of the agent all form part of the 
(initial) ‘model’ and […] this model is further tuned by learning and experience” (Friston et al. 2012a), 
using the general-purpose PP mechanisms. Reducing prediction error can be a proxy for fitness, be-
cause prediction error minimization is the proximal, local mechanism that makes sure that in the long 
run organisms stay within physiological bounds (Friston 2010).

2  Prediction and Reward
The fact that predictive models are grounded in homeostasis by no means implies that only predic-
tions about favorable outcomes can be formed. For example, even though some perceptual predictions 
may seem not to be consistent with biologically expected states (e.g. “the rattling that I hear is caused 
by a snake nearby”), it is all the more important to make them accurately, and not hallucinate more 

1 Recent work suggests there is a deeper, formal equivalence between PP and evolutionary population dynamics (Harper 2009). 
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agreeable alternatives. A negative stimulus only has really detrimental consequences for survival if the 
system was not able to adequately prepare for it, by marshaling the necessary compensatory mech-
anisms—if necessary by acting to avoid it. Once this is taken care of, what could be a threatening 
stimulus for bodily integrity, becomes harmless. Conversely, predicting (and hence preparing for) a 
future negative stimulus that turns out not to occur, is often very wasteful for an organism. So we see 
that there are good biological reasons for why prediction confirmation should be good, while failures 
should be bad. In fact, even an appetitive stimulus such as food could, for an unprepared body, be 
unpleasant. 

In a PP account, reward stimuli are just expected or familiar sensory states (Friston et al. 2012b). 
Intuitively we feel that we avoid punishment or seek reward and therefore visit these states less or more 
frequently, respectively. PP turns this intuition around, describing frequently visited states as rewards 
because they are expected. The reward value of a stimulus can be defined as the frequency with which 
it is chosen (Moutoussis et al. 2015). Rewards do not “attract behavior”, but attainment of rewards is 
the result of prediction error minimization, exactly as described for perception and action in general. 
Specifically, while in classical reinforcement learning goal-directed decision making consists of find-
ing the policy that maximizes expected reward, when framing it in terms of Bayesian inference one 
assumes reward attainment and finds the policy (state-action pair) that best explains or causes that 
effect (see Schwartenbeck et al. 2014; Solway and Botvinick 2012; Srivastava and Schrater 2015). If one 
redescribes utility of outcomes as prior beliefs about states one will end up in, one can use the same PP 
machinery to minimize errors along the road to the expected state. This boils down to building a gen-
erative model of rewards (same as for any other stimulus). Importantly, it requires that we have prior 
beliefs about what the world will be like and about expected final states or goals (Moutoussis et al. 
2014). The latter are the alternative outcomes that we expect to be reachable with policies we can apply. 
The key is to reduce the discrepancy between the likely and the expected outcomes. Note that within 
this approach, one could still make a distinction between “greedy” and epistemic actions (Friston et al. 
2015). Greedy or pragmatic actions use prediction errors to directly fulfill expected “rewarding” states, 
e.g. food consumption. This is possible when there is little uncertainty about the path leading up to 
the expected state. In case there is considerable uncertainty, epistemic actions are directed at acquiring 
more information, that allows greedy action in the future. This implies that action may lead to increase 
of the distance to a goal (prediction error), in order to move to a familiar position where one can ap-
proach the goal with larger certainty (Friston et al. 2015). However, any actual behavior will have a 
combination of pragmatic and epistemic elements, with prediction errors as the common currency.

The repertoire of innate expected states is specified and extended by learning throughout an ani-
mal’s life. In fact, within this view, there are no distinct reward or punishment stimuli (Friston et al. 
2009; Wörgötter and Porr 2005). Any sensory signal has a cost, namely the prediction error. It tells 
something about the success (failure) of the generative model we used for predicting the input. This 
also implies that habits or ‘rituals’, i.e., predictable sequences of behavior, are in fact a form of reward. 
There is usually no tremendous pleasurable experience to habits (we will come back to this point later 
on), but not performing habits when the appropriate eliciting context is present seems to produce 
some negative affect. It speaks to the self-sustaining nature of habits (Egbert and Barandiaran 2014; 
Egbert and Canamero 2014). Indeed, for over-learned behavioral patterns, devaluation of the rein-
forcer that was originally used to establish the behavior will not lead to reduction in behavior (Wood 
and Neal 2007). The wider implication is that organisms do not only preserve their life (homeostatic 
predictions) but also their way of life, as a set of expected (preferred) behaviors (Di Paolo 2003).

2.1  Problems with the Classical Reward Concept

Several developments started eating away at the concept of reward as absolute, stable representation of 
utility, that guides decision making. We highlight two theoretical problems, and two empirical ones. 

http://predictive-mind.net/papers/@@chapters?nr=24
http://dx.doi.org/10.15502/9783958573253
http://predictive-mind.net/


Van de Cruys, S. (2017). Affective Value in the Predictive Mind.
In T. Metzinger & W. Wiese (Eds.). Philosophy and Predictive Processing: 24. Frankfurt am Main: MIND Group. doi: 10.15502/9783958573253 6 | 21

www.predictive-mind.net

First, Friston et al. (Friston et al. 2012b) criticize the inherent circularity in the definition of reward. 
Reward is often defined as a stimulus that elicits (reward seeking) behavior (Schultz 2007). Evidently, 
one cannot invoke rewards to explain that same behavior later on. Second, recent theorizing suggests 
that rewards and punishments are always subjective and internal, meaning they “are constructions of 
the subject rather than products of the environment” (Dayan 2012, p. 1089). They are dependent on 
the position relative to expected states. Reward is not something in the environment, much less an ex-
ternal critic such as often assumed in computational reinforcement learning (see a similar critique in 
Singh et al. 2009). Psychological theories too, often incorporate a semi-hidden homunculus. Here, the 
value (or cost) function applied to perceptual or cognitive output hides an ‘evaluator’, an unanalyzed 
‘agent’ that can assign the values, within an allegedly objective, quantifiable construct. Misled by our 
intuition that rewards are self-evident, these homunculus remnants too often go unquestioned. 

Third, Chater & Vlaev (Chater and Vlaev 2011) argue on empirical grounds that, similar to sen-
sory judgment in psychophysics, value is a not represented as an absolute magnitude but rather as 
a comparison, relative to the local context. Chater & Vlaev conclude that “to the extent that people 
have a grasp of their own, more global, values, this must be inferred from sampling their own past 
choices and other memories, thus revealing their preferences” (Chater and Vlaev 2011, p. 96). In other 
words, humans can easily infer the reward value based on experience sampling, but these values are 
constructed predictions that best explain the sampled experiences. Generally, however, these repre-
sentations are not necessary to enable adaptive behavior.

Finally, after conditioning reward-modulated activity is found throughout the visual hierarchy, 
including the primary visual cortex and the lateral geniculate nucleus (Gershman and Daw 2012; 
Serences 2008). Conversely, “neutral” perceptual prediction errors elicit activity in striatal and mid-
brain regions, usually connected to reward/punishment and motivational functions (e.g., Schiffer et 
al. 2012; Iglesias et al. 2013; den Ouden et al. 2009). Other studies find that dopamine neurons also 
code for sensory uncertainty in a rewarded sensory decision-making task (de Lafuente and Romo 
2011), possibly because expected reward will decrease when sensory uncertainty increases (Bach and 
Dolan 2012). In sum, these developments indicate that the strict segregation of probabilities (percep-
tual processing) and utilities (cost-reward processing) is untenable (Gershman and Daw 2012), and 
suggest that the PP concept of reward merits further examination, because it does not suffer from 
these shortcomings.

2.2  Pleasant Surprises and Other Objections
The PP framing of reward does not mean that learning or behavior is not as constrained as in conven-
tional models of reward and punishment. To take the extreme example, even if at the agent-level a pain 
stimulus is perfectly expected, across all levels of predictions this will never become an expected state. 
Tissue damage can be seen as a violation of a bodily expected state (bodily integrity) that is not com-
patible with continued existence. On the other hand, this approach has no difficulty explaining why 
humans seem to find reward in endlessly varying idiosyncratic ‘niches’, based on the wide flexibility 
in predictions they can generate. 

An obvious counter-argument to the thesis that prediction errors always have a negative value is the 
existence of ‘pleasant surprise’, e.g. when one receives an offer that is better than expected. However, 
even in such cases there is some evidence in humans and monkeys that the initial reaction to predic-
tion error or surprise is generally negative (however short-lived) (Knight et al. 2013; Noordewier and 
Breugelmans 2013). But note that the agent-level emotion of surprise encompasses more than a single, 
momentary prediction error (surprisal) at some level of the brain. As we will see in later sections, the 
dynamics of the failures and successes in prediction are more important here.

Still, intuitively, the identification of prior probabilities (predictions) with utilities seems 
wrong-headed. For example, Gershman & Daw (Gershman and Daw 2012, p. 306) ask: “Should a 
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person immersed in the ‘statistical bath’ of poverty her entire life refuse a winning lottery ticket, as 
this would necessitate transitioning from a state of high equilibrium probability to a rare one?” To 
start to defuse this argument, one has to acknowledge that in such complex cases there is not just one 
prediction (e.g., of poverty) at play, but rather a complete predictive hierarchy. The person growing 
up in poverty does not lose his or her expectation to be well-fed and to provide for kin. There might 
be interiorized social expectations as well, that could also urge the person to accept the winning lot. 
That said, once accepted, the new situation may create quite some prediction errors given a predictive 
system unadapted to that new state of affairs (indeed, most lottery winners like to continue their life, 
including job, as before; Kaplan 1987). Later sections will hopefully shed a different light on these 
forms of ‘upward mobility’ (Gershman and Daw 2012). 

A related counter-intuitive idea in this proposal is the lack of distinction between core concerns, 
desires, needs or goals of an organism versus just any predictions. Part of the answer has to be found in 
the hierarchy, with likely states being about what happens when I see (or do) this. In contrast, desired 
states are about what I can, more abstractly, expect given my biological constitution, experience and 
sensorimotor capacities (i.e., predictive models)2. For example, while I, at some level, expect a food 
reward (desire), the way to “generate” this involves lower-level sensorimotor predictions about states 
and state transitions (some of which we control), that are navigated through by PEM. The assumption 
is that some expectations (e.g., about homeostatic states that, for example, a food reward can fulfill; see 
the section on homeostasis) are hardwired, installed by evolution. So another part of the answer must 
lie in the lower flexibility of goals/desires, compared to sensorimotor predictions which are flexibly 
updated when inputs change. However, because the whole hierarchical model is relevant to the organ-
ism (if it was not it would not have been formed), any prediction has cognitive (belief) and conative 
(desire) elements which cannot be disentangled (Millikan 2004). Predictions are never motivationally 
neutral, but represent states and direct behavior at the same time. More work will be needed to ex-
plain our intuitive distinction between likely and desired states if both are ultimately predictions, but 
the hierarchy is bound to play an important role. The lower level likely states mostly pertain to faster 
changing dynamics in inputs (regularities in shorter time frames). The higher level desired states link 
to slower changing dynamics (e.g., ‘I am a good person’). If evidence mounts that undermines the lat-
ter type of predictions, a full-blown existential crisis may occur. Luckily, there are often ways to shield 
such prediction errors, i.e., to explain them away with ‘auxiliary predictions’.

At this point one might object that reward (or positive affect) as defined so far is too ‘conservative’ 
a concept3: we basically aim to return to familiar, overlearned states or situations and resist anything 
that deviates from those expected states (but see dissonance or conflict theories of emotion; Mandler 
2003; Festinger 1962; Hebb 1946). This approach may explain the familiarity bias (cf. the mere expo-
sure effect) that is often reported (Lauwereyns 2010), but it does not even remotely seem to capture 
our experience of reward in general. We easily get bored—a loss of reward value—with very familiar 
or repetitive stimuli. More so, we seem to actively explore departures from well-trodden paths and 
expected situations. How do we explain that our motivations often lie outside of predictable ruts? And 
how can we more fully account for rewards as hedonic, pleasurable experiences derived from these 
different situations? That is what we will discuss next.

3  Affective Valence

If we define drives as prediction errors or discrepancies between current and expected state (Keramati 
and Gutkin 2011), we end up a new way of looking at the affective, experiential value of rewards as 

2 At least in humans this seems to have an important social comparative component as well: our predictions are formed based on what people that one 
considers to be similar to oneself, could attain.

3 But it is far from a passive notion: to keep the organism within some expected range of a variable often means elaborate and vigorous activity (cf. 
allostasis; Egbert et al. 2013).
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well. Reward value is directly dependent on drives in the sense that the reward value of, say, a drop of 
water depends on the internal drive state of the organism (e.g., a thirsty rat). It is easy to see that what 
is critical then is the change in prediction errors (drive states). Hence, positive value is defined as a de-
crease of prediction errors, while negative value can be equated with an increase in prediction errors.

More generally, we propose that the affective valence is determined by the change in (or first deriv-
ative of) prediction error over time (Joffily and Coricelli 2013; Van de Cruys and Wagemans 2011)4, 
with positive valence linked to active reduction of prediction errors, and negative to increasing pre-
diction errors. This makes sense because these temporal dynamics signal whether the organism is 
making progress (or regress) in predicting its environment, which in the long run translates in proper 
functioning of the processes of life (fitness) (Damasio 2003). It is easy to see that the reward value of 
food very much depends on how large the prediction error initially was (i.e., how hungry you were), 
and hence how big a change the food consumption induced, but we propose this is a general pattern.

Importantly, emotional valence is not something added to these error dynamics, it is those dy-
namics. They are a reflection of quality of processing, so they do not have to be evaluated in turn. We 
connect positive and negative affect here to general purpose processing characteristics, detached from 
particular utility or motivations. They are purely determined by how the organism interacts with its 
environment (see also Polani 2009).

This goes beyond the simple view that prediction confirmation results in positive affect, while vio-
lations of predictions are negative. Once homeostasis, rather than being reactive, relies on predictive 
models, errors often do not have direct effect on homeostasis (or fitness). It then becomes equally 
important to monitor prediction error dynamics, as it is to monitor the errors as such. Mere presence 
of instantaneous prediction error does not seem to be an adequate basis of emotional valence. Positive 
affect might still occur for a large instantaneous error as long as this error is (or has been) in the pro-
cess of being reduced.

It is no stretch for humans to imagine that making progress in predicting various sensorimotor do-
mains can be very rewarding (e.g. see Hsee and Ruan 2016). More challenging is to show those ‘infor-
mational’ rewards in nonhuman animals. However, Bromberg-Martin & Hikosaka (Bromberg-Martin 
and Hikosaka 2011) have managed to show that monkeys too are prepared to work to receive cues 
that reduce their uncertainty (reduce errors), even though their choice had no influence whatsoever 
on the actual reward subsequently received. The animals even chose the information cue more con-
sistently than they typically choose a high probability reward over a low probability reward (Niv and 
Chan 2011). Moreover, these informational gains elicited dopaminergic neural activity in midbrain 
regions similar to that for conventional rewards. Our account would predict that such effects general-
ize to other animal species, but of course, for there to be changes in prediction errors there need to be 
predictions formulated. Therefore, the specific instances of predictive gain will depend on the kind of 
models an animal constructs about its world.

Behavioral testing of these ideas is challenging because these dynamics are subject to learning and 
because it can be difficult to determine the predictions participants apply. Suggestive evidence comes 
from a recent study looking at the affective consequences of conflict resolution (Schouppe et al. 2014). 
These authors build on the priming study by Dreisbach & Fischer (Dreisbach and Fischer 2012) which 
showed that incongruent Stroop stimuli, as opposed to congruent ones, can prime people to more 
quickly evaluate negative words or pictures than positive ones (an indirect measure of negative affect). 
Schouppe et al. (Schouppe et al. 2014) report that, while incongruent stimuli are indeed aversive, once 
they are successfully solved more positive affect will follow than for congruent stimuli. The original 
prediction error (conflict) seems conducive to later reward from resolution, consistent with what we 

4 Note that the model by Joffily & Coricelli strictly speaking is not about prediction errors but rather about the more general concept of (variational) 
free energy.
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propose here. Future studies should attempt to induce, violate and resolve new predictions in the lab 
to see if these dynamics have the hypothesized emotional effects.

3.1  Specifying Predictive Progress

Even though the current view entails that emotions can arise wherever errors are compared, there are 
good computational and ecological reasons why change in errors is computed and compared within 
the limits of one and the same input domain. Comparing errors from very different perceptual levels 
or sensorimotor situations would be very demanding to the system, and, more importantly, unpro-
ductive. As Oudeyer, Kaplan & Hafner (Oudeyer et al. 2007, p. 8) remark with regard to an artificial 
agent, such a system may “attribute a high reward to the transition between a situation in which a ro-
bot is trying to predict the movement of a leaf in the wind (very unpredictable) to a situation in which 
it just stares at a white wall trying to predict whether its color will change (very predictable).” PP pro-
poses that specialization (functional segregation) in the brain stems from conditional independence 
of different representations—representations that have predictive relations organize into regions with 
tight interconnections (Friston et al. 2013; Stansbury et al. 2013). This architecture may also be used to 
evaluate changes in errors relating to predictions that actually belong to the same domain.

Predictive progress has already been used to understand and implement intrinsic rewards in the 
domain of artificial intelligence (Kaplan and Oudeyer 2007; Schmidhuber 2010). More recently a de-
crease in prediction errors (or equivalently a predictive learning gain) was assumed to underlie intrin-
sic rewards in humans as well (Kaplan and Oudeyer 2007). Agents that at each point try to maximize 
predictive progress, will avoid losing time in regions of sensorimotor space that are too difficult to 
predict with the current capacities and regions that do not contain any learnable differences anymore, 
either because the domain is known or because what is left is noise variation. Hence, they will auto-
matically focus on situations and stimuli that contain learnable differences, just above their current 
state of predictive knowledge, where the largest gain can be made. This guiding principle enables 
the agent to explore and proceed through stages of increasing predictive difficulty (‘developmental 
phases’). 

There is some debate about the extent to which such an imperative to maximize prediction error 
reduction and PEM are one and the same thing (Clark 2013; Froese and Ikegami 2013; Little and Som-
mer 2013). Proponents of the ‘maximizing learning gain’ position contend that an organism driven 
by PEM will seek a dark room and stay there, because prediction error is maximally reduced there. 
However, a dark room is not actually a maximally expected situation, or does not stay so for long, in 
a PP framework (see also Friston et al. 2012a). Prediction errors are always computed relative to an 
agent’s possibly complex, embodied model, with its specific organism-defining expectations, quickly 
rendering the dark room unexpected. While this seems to answer the ‘negative’ objection (why not 
stay in the dark room), can PEM also fully account why we humans ‘positively’ seek out prediction 
errors? This seems to depend on the kind of multi-level and second-order predictions we generate. As 
an example, if, at an abstract level, you expect yourself to be friendly, confirmation of this prediction 
will sometimes entail prediction errors on other, possibly lower levels. The key is to predict the viola-
tions as well, such that their impact can be reduced (see discussion on precision above). Similarly, if 
you expect to be a good darts player, you will need to tolerate some lower level sensorimotor errors to 
get there, usually because you can also reasonably expect the errors encountered to be reducible, based 
on previous experience. In short, a good predictive agent will always expect to be surprised. We seek 
prediction errors that are reducible, given our models, including the actions (as beliefs about inputs 
we control) we can rely on.
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3.2  Non-Conceptual Metacognition

An operation performed on the prediction errors can be considered a form of metacognition. Similar 
to precision, the temporal comparison of prediction errors is a second-order operation. In the first-or-
der process, prediction errors are information used to update predictions, while in the second-order 
process the prediction errors as outputs of the first order process are in turn compared in time, which 
provides new information that, we argue, is phenomenally experienced as valence and that may be-
come available for processes beyond the predictive chain that created the errors. The result is a form of 
nonconceptual information about uncertainty that increases or decreases in the current situation. It is 
not about the (propositional) content but about the content-forming processes. The thesis here is that 
emotions are the qualitative experience (quale) of this kind of nonconceptual information. In a related 
view, Reisenzein (Reisenzein 2009)5 argues that emotions non-conceptually convey important chang-
es in an experiencer’s belief system in interaction with the world. This is indeed what prediction errors 
signal. Their dynamics are a form of feedback on the system’s own functioning as it deals with external 
and internal challenges, so a conception of affect as a continuous “neurophysiological barometer of 
the individual’s relationship to an environment at a given point in time” (Duncan and Barrett 2007) is 
nicely consistent with this. Similarly, Frijda (Frijda 2006, p. 82) notes: “pleasure is the positive outcome 
of constantly monitoring one’s functioning”. For affect and motivation, the attainment of the “object” 
is of lesser importance, considering that predictive progress is zero then. This provides an interesting 
perspective on what Cantor and Kihlstrom (Cantor and Kihlstrom 1987, p. 179) called the paradox 
of goal-setting, namely “that people are often less intrigued or impressed with an end-state the closer 
they come actually to achieving it”.

In the current view, the non-conceptual information is available in terms of the positive or negative 
affective tone of experiences. Note the connection with the concept of cognitive or perceptual fluency 
(Reber et al. 2004) as the ease with which stimulus material is processed. In its different operational-
izations (e.g., by increasing the symmetry and contrast of visual stimuli, or the readability of words), 
it has been repeatedly shown to positively affect the appreciation of stimuli. Fluency should also be 
seen as a metarepresentation (Alter and Oppenheimer 2009) and is arguably well characterized as the 
experience of actively reducing prediction errors (and disfluency as increases in prediction errors). 
Moreover, if one identifies emotion with the way of processing rather than end-products, perceptual 
(dis)pleasures and ‘proper’ emotions might be subsumed under the same principles. Specifically, (dis)
fluency with regard to approaching high-level goals or biological concerns (bodily expected states) is 
what we usually associate with emotions. This idea is barely new. In a very influential control-theoret-
ic approach to emotions, Carver & Scheier (Carver and Scheier 1990) linked dynamics in mismatch 
between goals and actual state of affairs to dynamics in emotion. They described how multi-level goals 
should be interpreted as hierarchical reference values, from abstract idealized goals (e.g., having a 
self-image of a good person at the highest level), to more concrete actionable expectations (e.g., shov-
eling snow off of walks). In PP terms, actions have to make sure that the agent can harvest the inputs 
that conform to “trickled down” expectations. So, analogously to PP, these expected values can gen-
erate errors at every level. Our own actions (or external circumstances) cause changes over time in 
discrepancies relative to these values. Carver and Scheier already argued that emotion is about moni-
toring the rate of discrepancy (prediction error) reduction, as we propose above. However, their anal-
ysis suggests a pertinent extension of what we presented so far. They suggest that the rate of mismatch 
reduction is in turn subject to a control loop, comparing actual with expected rate of change. Only 
when the current rate of prediction error reductions deviates from the expected rate of reduction, so 
Carver and Scheier argue, one experiences emotion. This will of course be positive affect if the rate of 
progress to the goal is higher than expected, negative if it is lower than expected. 

5 Note that in Reisenzein’s theory desires still have a status categorically different from other beliefs.
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Based on PP, this makes a lot of sense. As we described, prediction error minimization is the way 
we perceive and act, so we are reducing errors all the time, e.g., when we successfully use our senso-
rimotor system to walk the street. Generally, little positive or negative emotion is involved despite 
these constant error reductions. This may mean that these changes in sensorimotor errors are not 
large enough, but most likely what rate is substantial depends on the expected rate of reduction for 
the current sensorimotor context. Where do the predictions of rates come from? These might very 
well be contextually learned through the same predictive machinery as for ‘first-order’ predictions. 
In fact, PP already includes second order expectations about precisions, which can be considered as 
(inverse squared) expected prediction errors (Mathys et al. 2014). The higher order prediction errors 
that are used to update these expected precisions (so-called volatility prediction errors or VOPEs) 
compare predicted prediction errors (predicted uncertainty) with observed prediction errors (actual 
uncertainty). For example, if first level prediction errors (also called value prediction errors or VA-
PEs6) are reduced, but the corresponding VOPEs do not decrease, the error continues to be lower than 
expected, possibly providing a basis for positive affect. It still needs to be clarified to what extent the 
temporal derivatives and expected rates as described here can be realized using expected volatilities 
per se (Joffily and Coricelli 2013), but these developments at least suggest learning about such second 
order states is possible within a PP system.

However, genetic factors might also contribute to these expected error reduction rates. Individual 
differences in expected rates of error reduction may account for certain dispositional affective traits. 
Indeed if the predicted rate of progress is set too high, an individual will tend to experience more 
negative affect than positive, because the prediction will rarely be matched (Carver and Scheier 1990). 
This may happen, even if this person’s actual rate of progress is very high. Furthermore, if the expected 
rates of progress are indeed at least partly learned specifically for different sensorimotor situations, 
this may constitute a form of emotion regulation. Specifically, the system may, through updating the 
expected rates, remain within a given range of emotional experience by adapting this criterion of ex-
pected rate of change (the neutral point).

Interestingly, once an agent can track and learn to expect certain rates of change in prediction er-
rors, it arguably will show a distinct propensity to explore and learn. This continuous, active search for 
reducible prediction errors (satisfying an expected error reduction rate) may in turn have enabled the 
development of rich social relations and culture. As such, this may form another counter-argument 
for the dark room objection against the principle of PEM: There will never be a stationary stimulus or 
situation satisfactory for an agent that expects some non-zero rate of prediction error minimization.

3.3  Varieties of Affect
Looking back, we have first encountered reasons to attribute emotion to prediction errors (mismatch) 
or confirmation as such, then we have shown it may be better attributed to changes over time in pre-
diction errors, and finally to errors about expected rates of change. Importantly, these three can be 
independent. Borrowing an analogy from Carver & Scheier (Carver and Scheier 1990); if we make the 
parallel with distance, speed (first derivative of distance over time) and acceleration (second deriva-
tive), we can see that any rate of progress can be associated with any instantaneous prediction error, 
and further any change in rate of progress can co-occur with any instantaneous rate. The rate of error 
minimization seems to provide the necessary signal for valence. However, in mammals, especially hu-
mans, rate may be subjected to predictions of its own, moving important emotional dynamics to that 
level. Still, rate may determine the continuous hedonic tone of what is sometimes called ‘background 
emotions’ (Damasio 2000). A steady rate of progress may induce a diffuse feeling of well-being, a sense 
of properly functioning bodily and sensorimotor systems, akin to what is sometimes described as ex-
perience of flow (Csikszentmihalyi 1996). The usually brief episodes of (intenser changes in) emotions 

6 This is not about emotional value, but about a quantitative mean value of the estimated state.
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in our daily life, i.e., emotions as commonly understood, seem linked to unexpected changes in rates 
of progress.

Emotions are notoriously volatile, comparative, and subject to habituation (Frijda 2006 [1988]). 
These characteristics naturally follow from the current framework. By definition, prediction errors 
and their temporal dynamics are dependent on learning. Pleasures from increased rates of predictive 
progress only last as long as this progress is possible. Kaplan & Oudeyer (Kaplan and Oudeyer 2007) 
note that “progress niches are nonstationary”. Meanwhile, the contrastive property of emotion entails 
that a suboptimal state (sizable prediction error) may still be pleasurable depending on the starting 
position, because there is a positive, possibly higher than expected, rate of error reduction. Emotions 
emerge as situated in perpetually moving regions of state space in a system that grounds them in pre-
dictive dynamics. Rather than being associated with particular “target” objects or states, they are the 
concomitant of successful (or unsuccessful) striving (Duncker 1941). Note that this type of system 
does not aim to maximize the frequency of positive affect (nor would that be particularly adaptive; 
Carver and Scheier 1990). Rather, it may redistribute frequencies of positive and negative affect so as 
to preserve the range.

One might object that the view we propose runs the risk of ‘intellectualizing’ emotions. Indeed we 
essentially described affect as a specific form of cognition. In that sense, it is somewhat related to pre-
vious emotion theories about the ‘need to resolve uncertainty’, most aptly formulated by Kagan (Kagan 
1972). But conceptualizing this as the ‘wish to know’ (Kagan 1972) or the ‘need for cognition’ (Ca-
cioppo and Petty 1982) seems to suggest that this capacity is aimed at finding out some ‘ground truth’ 
(and exclusive to so-called higher animals). Knowledge captured in the predictive models is always 
subjective and constructed (Heylighen and Joslyn 2001), i.e., the agent has no direct access to the ‘real 
world’, but can only ‘negotiate’ its conditions by actively predicting (constructing) its characteristics. 
As von Glasersfeld (von Glasersfeld 1995) stated we meet the world only in our failures. In contrast 
to these existing related approaches, ours centers on prediction errors, rather than any uncertainty, 
and more specifically their dynamics (rather than static uncertainty). Still, our account underscores 
the role of uncertainty and unpredictability in emotion and motivation (Anselme 2010; Jackson et al. 
2014; Whalen 2007). For example, rats seem more motivated to work for a reward in conditioning 
experiments that introduce some uncertainty in the predictive link between conditioned stimulus and 
unconditioned stimulus (reward) (Anselme et al. 2013). Conversely, the exacerbating effect of uncon-
trollability7 and unpredictability on stress and anxiety is well-documented (Hirsh et al. 2012; Mineka 
and Hendersen 1985).

Error dynamics are common to all processing, be it interoceptive, exteroceptive, abstract goal-re-
lated or low-level sensorimotor. This may better account for the very broad range of situations that 
can engender positive or negative affects. For example, apart from biologically relevant things, positive 
emotions may be experienced from scary movies, abstract perceptual stimuli (e.g., in art), acquired 
tastes such as piquant foods (Rozin and Kennel 1983) or painful stimulation such as masochistic plea-
sures (Klein 2014). These instances may be difficult to explain from the viewpoint that pleasure is only 
attached to biologically instrumental situations (or appetitively conditioned stimuli). Below we review 
those emotions, subtle and intense, that are usually considered to be atypical, for that reason. We try 
to show that, when taking into account the error dynamics relative to (learned) expected states, they 
are very representative emotions.

3.3.1  Intrinsic Pleasure and Curiosity

Development is a rich source of emotions. For example, the baby that wants to keep on playing peek-a-
boo (Parrott and Gleitman 1989) till predictions of object constancy are fully formed and the situation 

7 In the current account the distinction between unpredictability and uncontrollability largely dissolves—actions (to exercise control) are predictions 
as well, with concomitant expected levels of prediction error decrease or increase.
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contains virtually no dynamics in prediction errors anymore. Or the child that is excited to hear the 
same bed-time story again and again, until errors are driven down by learning its structure (not only 
of the plot but also of lower level sensory patterns, as is for example clear from toddlers’ preference 
for repetitive rhymes). Later in life, emotion theorists emphasize the centrality of the emotion of in-
terest, for development and beyond (Izard 2007; Silvia 2001). The two factors that have been shown to 
determine interest can easily be translated to our approach, arguably gaining some specificity in the 
process. First, only new, unexpected or complex stimuli (“novelty-complexity appraisal”) can elicit 
interest (Silvia 2008), implying that prediction errors are required8. The second factor needed to evoke 
interest is roughly described as comprehensibility or coping potential (Silvia 2008), an appraisal of 
one’s capacity to deal with or understand the (unexpected) stimulus. In our terms, this would be an 
expectation of a positive rate of error reduction for the current sensorimotor context. We continually, 
implicitly probe our coping potential by predicting performance (sensory consequences of actions) 
and computing errors. In fact, making progress (actively reducing errors) in predicting a certain activ-
ity domain would be a good indicator of adequate coping potential in this domain in the near future. 
Hence, the importance of expected rates of progress. In this way, important elements of appraisal the-
ories of emotion can fit within this PP account (Ellsworth and Scherer 2003; Moors 2010).

One of the most influential views on curiosity and exploration is Berlyne’s optimal level account 
(Berlyne 1970). He argued that organisms seek out stimuli with medium level complexity or novelty, 
to keep their arousal at an optimal, pleasing level. This preference for optimal level of complexity is 
corroborated in experiments with infants that looked longer at stimulus items that were neither very 
simple nor very complex (Kidd et al. 2012). Rats too, prefer to spend time in arms of a maze of which 
the patterns on the walls were slightly more complex relative to the walls they preferred earlier (Dem-
ber et al. 1957). The latter studies emphasize the crucial role of experience, which can lower complex-
ity (increase predictability). We would argue that organisms are very much tuned to reducible uncer-
tainty in input. They explore stimuli with medium levels of prediction errors, because they predict a 
positive rate of error reduction in these inputs. Indeed, they have had experience of error reduction 
with slightly simpler but similar inputs. In agreement with this, 18 month old children already attend 
longer to learnable compared to unlearnable linguistic grammar, strongly suggesting they make good 
estimates of their future predictive learning progress (Gerken et al. 2011). 

In adults, through experience, these dynamics, and the pleasures or displeasures derived from 
them, are not so much situated on the purely perceptual level, but rather on the conceptual level, 
e.g., stories, jokes or soaps. Although a complete treatment of social emotions will not be given here, 
observe that they often involve a convergence or divergence in opinions or ‘worldviews’ (expected 
states and beliefs). We make models of ourselves and others, like we do for the rest of our environment 
(Moutoussis et al. 2014), so similar error dynamics are in play in this context. Moreover, the rewarding 
sense of (em)power(ment) can be interpreted as the result of actively bringing about anticipated sen-
sory effects through action execution (Polani 2009). This seems consistent with our idea that rewards 
derive their rewarding capacity from reductions in pre-existing prediction errors. Beneficial, motiva-
tional effects of a sense of control (‘mastery’) (Klein and Seligman 1976) may similarly be explained as 
positive affect from a high expected rate of error reduction. 

3.3.2  Humor
In general, the positive emotional mark on unexpected progress towards predicted states is stronger 
(than just progress). This is consistent with the view proposed here, that a higher than expected rate of 
error reduction determines positive emotion. This is best illustrated in laughter. In a poignant analysis, 
Sroufe & Waters (Sroufe and Waters 1976) observe that laughter results when a rapid, maximal tension 
build-up is followed by a rapid ‘release’ or ‘recovery’. The ill-defined term ‘tension’ was often used to 

8 Note that complexity is also dependent on predictability.
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denote some incongruity in perceptual input, assumed to cause some negative arousal. Of course, pre-
diction error can take its place, gaining not only specificity, but also integration in a plausible theory 
of cognitive processing. More important to stress is that a steep, sudden gradient of prediction error 
will lead to a prediction of low rate of error reduction. If errors can in fact be reduced, e.g. through an 
appeal to different predictions (restructuring of input), the reduction rate will be much higher than 
expected, resulting in intensely positive affect (laughter). This is the typical processing profile, not 
only for peek-a-boo-like fun in children, but for instances of humor in general (Rozin et al. 2006). 
Consistent with our approach, both the gradients and the unexpectedness are crucial. In earlier work 
(Van de Cruys and Wagemans 2011), we developed a similar account for “aesthetic emotions”, where 
artists allow for unexpected increases in error reduction rates for greater appreciation, consistent with 
the emphasis on relative fluency in recent experimental psychoaesthetics (Topolinski and Reber 2010; 
Wänke and Hansen 2015).

4  Feelings and Function

Our account implies a fundamental misattribution in emotion. The intuition that emotions are en-
tirely caused by objects in the world is misguided, because in fact they are linked to processing char-
acteristics (see also Reber et al. 2004) rather than content of processing itself. The evaluation of error 
dynamics seems to provide a parallel (affective) dimension to experience, that is not strictly linked 
to the content (predictions) or particular prediction errors taking part in those dynamics. Still, the 
specific and diverse forms emotions can take, seem largely dependent on the conceptual context (sen-
sorimotor or cognitive domain) in which the error dynamics appear. But such attributions are always 
constructions, they will never be directly about what caused the emotions, the (changes in) error re-
duction rates. One might argue that conscious emotions (or feelings) thereby acquire an intentional 
object or propositional content, but this does not seem to be a strict requirement, as the existence of 
conscious moods illustrate. As a related side note, Picard (Picard 2013, p. 2496) reports on two pa-
tients experiencing a feeling of intense bliss during epileptic seizures originating in the insula. One 
patient describes the experience: “...all the ordinary facts about the environment seem suddenly to be-
come infused with certainty and a sense of inevitability... The sense that I had when I was experiencing 
some of these seizures was not unlike a continuous series of profound “a-ha!” moments. [...] Instead of 
merely being justified by one or several other considerations or observations, [my beliefs] seemed to 
be irrefutably supported by literally everything in the world.” Such reports suggest first that certainty 
(lack of prediction errors) is an important factor in bliss, and second that those affective experiences 
can happen without concrete object or propositional content. Both conclusions are very much in line 
with the current view. This raises the empirical question of whether the insula, which is known to be 
both involved in uncertainty or risk processing and in emotions (Singer et al. 2009), might be respon-
sible for some of the computations on error (or uncertainty) dynamics that we propose underlie the 
reports of intensely positive aha-experiences. 

In the current view, the full-fledged (semantically rich), conscious emotions, in all their hetero-
geneity and object-directedness, appear as a form of construction, a “making sense of ” underlying 
affect (Barrett 2014; Russell 2003). This could already be seen as a form of coping, a reaction to affect: 
categorizing or labeling an emotion to make it predictable (explaining away errors). The underlying 
affect consists, in our reasoning, of the changes in error reduction rates. The first-order errors that 
determine these dynamics can be multisensory (combined interoceptive and exteroceptive). Con-
scious feeling will amount to finding predictions that best explain the co-occurrence (regularity) of 
situational context (exteroceptive input) and bodily states, together with changes in rates of error 
reduction (second-order). Hence, the intentional content of feelings is the product of inferences, but 
the generation of emotion lies in error dynamics. Differently put, if emotions are categorized, a kind 
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of understanding is attained, which explains away part of the unexpected changes in errors, hence 
removing some of the emotionality.

To give one simple but concrete example of how a similar emotion might result in different feel-
ings: an unexpected increase of prediction errors may be associated with both fear and shame (giv-
en that both are negative emotions). But on the basis of the different conceptual, situational context 
(e.g., shame probably concerns internalized social expectations, fear not necessarily so) they are dif-
ferently interpreted and experienced. Interestingly, just by conceptualizing it as shame, one might ac-
tivate coping strategies that in related situations helped returning to more expected states. The shame 
prediction for this constellation of inputs is predictive of certain actions or thought strategies that 
are in turn predictive of a reduction of prediction errors (e.g., actions to restore one’s reputation with 
others).

4.1  Functions of Affect
The computations outlined above should be understood as building a model about how uncertainties 
evolve in the current context. It seems plausible that these models are crucial in guiding choices (im-
plicitly or explicitly) about whether to continue to engage with the current sensorimotor activities or 
whether to disengage and switch. Specifically, (unexpected) decreases in prediction errors should raise 
predictive engagement, in line with how emotion motivates us to remain involved in activities. Con-
fidence9, as a rather emotional form of metacognition (Chetverikov and Filippova 2014), also seems 
to stem from these processes. In contrast, (unexpected) increases of prediction errors may change the 
balance in favor of performing actions to control input (conform to predictions; assimilation), instead 
of a continued search for revised predictions (accommodation). An action to avoid perceptual input 
(by averting the eyes), or even a mental switch to leave a certain way of thinking can also be ways to 
(temporarily) return to a more expected rate of error reduction.

This is where arousal and action tendencies, often considered to be core components of emotion 
(e.g., Frijda 1987), come in. Rather than being causally constitutive components, we would put them 
at the output side. If, as we argued, emotions are caused by (unexpected) changes in prediction errors, 
these computations indeed seem especially important in tipping the balance from updating predic-
tions—a strategy that may be inadequate when confronted with increasing, precise errors—to acting 
to change the things predicted. Arousal is then derived from such action preparations. Of course, dy-
namics in autonomic and action-related prediction errors can give rise to emotional valence as well, 
given that they are governed by the same PP principles. In fact, it seems that the closer to action or 
autonomic responses these error dynamics are situated, the more intensely negative or positive emo-
tions induced by these dynamics are. This may, however, have more to do with the precision of the 
predictions than with discrete differences in weight or importance in these predictive systems. 

The brain predicts external stimuli in service of the body. It allows anticipation of what the body 
will need in terms of resources. Hence, it is important to accurately represent bodily states and their 
causes (Hohwy 2011). However, just recruiting bodily resources, or representing bodily states (and 
their causes) isn’t emotion. If the body perfectly predicts the need for resources based on external 
input and prior knowledge, there can be bodily activation (arousal) without much emotion. Again, 
momentary prediction errors do not imply much, it is the changes in (in this case somatovisceral) 
prediction error, especially the unexpected ones, that should lead to notable emotion. So, while we 
agree with the models by Seth (Seth 2013), Gu, Hof, Friston & Fan (Gu et al. 2013) or by Barrett & 
Simmons (Barrett and Simmons 2015) that hold that emotions have to do with somatovisceral pre-
diction errors, we stress that those accounts may not sufficiently explain the causes of emotions. The 
distinction should be clear: those accounts argue emotion is exactly like perception except of soma-
tovisceral instead of exteroceptive inputs. Emotion is then inference to causes that explain (generate) 

9 We mean confidence as the common sense personal-level phenomenological construct here, not the subpersonal computational concept.
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somatovisceral inputs. We do not deny that these somatovisceral models are constructed, but focus on 
the dynamics in discrepancies of bodily state as the causes of emotions. The origin of emotion lies not 
in being able to infer or predict (a cause of) bodily changes, but rather in how we succeed or fail to do 
so over time (error dynamics).

Apart from actually instigating action (preparation), another function of negative affect (increasing 
rates of prediction errors) is inducing disengagement from current predictive activity in order to move 
to a more predictable ‘set’, what one could call compensatory progress and order. Preliminary evidence 
for this idea has come from studies finding increased predictable pattern perception when confronted 
with ambiguity, inconsistency or lack of control (Greenaway et al. 2013; Proulx and Heine 2009; van 
Harreveld et al. 2014; Whitson and Galinsky 2008). More broadly, uncertainty or inconsistencies may 
lead people to reaffirm their own (predictable) worldviews, such as nationality, ideology or religion 
(Inzlicht et al. 2011; Proulx et al. 2010). The negative affect thought to drive these effects is, according 
to our theorizing, a direct reflection of the higher than expected increase in prediction errors. These 
examples may then all boil down to efforts to return to an expected, positive rate of uncertainty reduc-
tion. The reverse may also hold: positive mood seems to induce a greater reliance on default prior or 
top-down knowledge, as indicated by an increased influence of prior judgments, scripts or stereotypes 
in event or person perception (Bless 2000; Bodenhausen et al. 1994). This dovetails with the proposed 
view that positive mood is linked to high predictive progress, implying that the models the organism 
has about its world have improved and so are adequate. A rational conclusion for the system would 
then be to increase reliance on these prior, top-down models (and reduce the influence of prediction 
errors).

A last function of these affective computations relates to learning and attention. Joffily & Coricelli 
(Joffily and Coricelli 2013) formally show that the first derivative over time of prediction errors can 
fulfill a similar function as the one usually assigned to the precision mechanism. An increase in pre-
diction errors (negative valence) may indicate that actual, important changes in the world have taken 
place, so input (incoming prediction errors) should be weighted more heavily compared to top-down 
predictions (that apparently need to be updated). In other words, the error rates can be used as a me-
ta-learning signal, tuning the learning rate for new inputs, depending on whether there is much too 
learn (i.e., in a changing world) or not. What we defined as expectations of error reduction rates then 
take on the role of expectations on learnability of particular input domains. These are models about 
what we do not know yet about the structure of the world (Joffily and Coricelli 2013) and how these 
uncertainties will evolve, i.e., to what extent we estimate these uncertainties will be reducible. Joffily & 
Coricelli argue that a model that uses rate of change in errors is more parsimonious than one includ-
ing precisions (a conventional PP model), but more work will be needed to clarify both differences in 
computational realizability and biological plausibility.

5  Outlook

Throughout history, visual perception —the ‘noblest sense’—was considered our main route to find 
the “ground truth” about the world out there. But physical differences in the world only become in-
formation (meaning) by the way we probe them, with our organism-specific predictions. This means 
that value and information are intertwined by construction —courtesy of our existence as biological 
organisms. Taking the organism as an (extensible) model of its environment, epistemic coherence is 
paramount and emotions emerge as the dynamics of attaining this predictive coherence or error re-
duction.

In large part, the plausibility of this framework for affect hinges on the success of PP proponents 
in pinning down the physiological basis of the computational scheme. As discussed, prediction errors 
are sub-personal processing products, which means that we will need to rely on neural measures for 
tracking these dynamics. So far, there is no direct neural evidence for the existence of the proposed 
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computational operations (or their products). There is only very preliminary and indirect evidence to 
date for the separable error and prediction populations of neurons (de Gardelle et al. 2012), as pos-
tulated by PP. However, the general idea that there are different levels in the hierarchy, with separable 
prediction errors has recently received support (Diuk et al. 2013; Wacongne et al. 2011). Once we 
succeed in properly localizing those on different hierarchical levels of processing, we can start looking 
for dynamics in these errors and neural populations or regions that track these changes and generate 
expectations of error reduction rates. Most likely, these computations are performed distributed in the 
brain (similar to first-order PP), given the widely distributed encoding of uncertainty in the brain de-
pending on the domain concerned (Bach and Dolan 2012). In this regard, the overlap in regions found 
to be important in processing uncertainty and those active for emotional processing, is promising. 

All in all, this approach shows some promise for the PP framework to become a common, well-spec-
ified language for psychology, from low-level sensorimotor issues to emotional and existential issues. 
The convergence between computational neuroscience and psychology as seen through the PP ac-
count is encouraging. However, this is only a preliminary exploration of how emotions and related 
aspects of experience may be reframed within PP. Many challenges lie ahead, but the question of 
whether the brain indeed tracks error increases and decreases and forms predictions about those, is 
open to empirical and computational investigation. If an emotion theory along the lines presented 
here is right, we might be getting some formal grasp on affective value and intrinsic motivation, key 
characteristics of proactive, living organisms.
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